Jan 092017
 

One problem for using HTTPS was in the past that sharing DNS names with one web server was not supported. HTTP can handle this for longer.

However HTTPS also supports virtual HTTPS servers: SNI does that.

And here is how to use it with HAProxy:

frontend https-in 
        bind *:443 ssl crt /etc/haproxy/ssl/private/ 
        reqadd X-Forward-Proto:\ https 
        acl is_site1 hdr_end(host) -i www1.qw2.org 
        acl is_site2 hdr_end(host) -i www2.qw2.org 
        use_backend site1 if is_site1 
        use_backend site2 if is_site2

All the magic is in the bind line where a directory with PEM certificates (concat of fullchain.cer and the key)

Now you can have https for everything and HAProxy will handle all the secure connectivity for you.

 

 

Jan 092017
 

To run boxbackup on a system which uses systemd, use this little systemd service file (taken from here and modified for Ubuntu):

# /etc/systemd/system/boxclient.service
# This service file runs an Box Backup daemon that runs backups on demand.

[Unit]
Description=Box Backup Client
Wants=network.target
After=network.target

[Service]
ExecStart=/usr/bin/bbackupd -F -c /etc/boxclient/bbackupd.conf
KillMode=process
Restart=always

[Install]
WantedBy=multi-user.target
 Posted by at 17:40  Tagged with:
Dec 182016
 
Orange Pi Zero - I/O

I finally figured out how to do simple I/O on the GPIO pins on the Orange Pi Zero. It’s actually the same as Raspberry Pi and it relies on /sys/class/gpio/

Most important: Use Armbian, and I in particular use 3.4.113 (legacy).

GPIO

 

Linux GPIO SOC Label CON4 CON4 Label SOC Linux GPIO
Vcc3V3-EXT 1 2 DCIN-5V
12 PA12 TWI0-SDA 3 4 DCIN-5V
11 PA11 TWI0-SCK 5 6 GND
6 PA6 PWM1 7 8 UART1_TX PG6 198
GND 9 10 UART1_RX PG7 199
1 PA1 UART2_RX 11 12 PA7 PA7 7
0 PA0 UART2_TX 13 14 GND
3 PA3 UART2_CTS 15 16 TWI1-SDA PA19  19
VCC3V3-EXT 17 18 TWI1-SCK PA18 18
15 PA15 SPI1_MOSI 19 20 GND
16 PA16 SPI1_MISO 21 22 UART2_RTS PA2 2
14 PA14 SPI1_CLK 23 24 SPI1_CS PA13 13
GND 25 26 PA10 PA10?

Note: PA10 does not seem to work.

 

To enable one GPIO pin, do this as root:

echo 7 >/sys/class/gpio/export
chmod a+rw /sys/class/gpio/gpio7/*

Now in NodeJS you can do (as non-root):

var Gpio = require('onoff').Gpio, 
  led = new Gpio(7, 'out'); 
 
function blinkled7() { 
  var state=false; 
  return function () { 
    console.log(state); 
    if (state) led.writeSync(0) 
    else led.writeSync(1); 
    state = ! state; 
    } 
} 
 
f=blinkled7(); 
setInterval(f, 1000);

which blinks GPIO pin 7 (AKA PA7). You can also watch pins:

var Gpio = require('onoff').Gpio,
  led = new Gpio(7, 'out'),
  button = new Gpio(16, 'in', 'both');

button.watch(function (err, value) {
  if (err) {
    throw err;
  }
  console.log("Changing to ", value);
  led.writeSync(value);
});

process.on('SIGINT', function () {
  console.log("Leaving...");
  led.unexport();
  button.unexport();
});

which makes the LED match what PA16 is. If you connect PA16 to e.g. PA6, you can change PA6, which is detected by PA16 which is reflected in the LED change on PA7!

 

LED’s

The 2 on-board LED’s can be controlled via

echo [0|1] > /sys/class/leds/[red|green]_led/brightness

which map to PA17 (red) and PL10 (green), but those are (of course) claimed by the LED driver.

PWM

Not figured out yet.

 

Dec 182016
 

Letzte Woche gab’s Vanillekipferl. Hier das Rezept (http://www.chefkoch.de/rezepte/403911129675192/Uromas-Vanillekipferl.html). Auf die Hälfte reduziert:

  • 150g Mehl
  • 125g Butter
  • 60g Mandeln, gemahlen
  • 50g Zucker
  • Vanillezucker/Vanillearoma
  • Zum Wenden: Puderzucker, Vanillezucker

Alles mischen, in Folie gewickelt 30min in den Kühlschrank stellen. In der Zwischenzeit Puderzucker und Vanillezucker mischen und in eine verschliessbare Schüssel geben (zum wiederverwenden des Zuckers).

Kipferlteig in eine Rolle mit etwa 4cm Durchmesser rollen. 1cm Scheiben abschneiden. Daraus die Kipferl formen und recht eng aneinander auf ein mit Backpapier belegtem Blech legen. Bei 175°C ca. 20 Minuten backen.

Kurz (3 min) kühlen lassen und dann in die Puderzucker-Zucker Mischung wenden. Abkühlen lassen und in eine Dose verschliessen.

 

Dec 032016
 

Since I keep forgetting what pins I used for the ‘595 ICs which drive my 16 segment LED clock, here the pinout:

1: Vcc   2: GND
3: /SCK  4: NC
5: SER   6: NC
7: /RCK  8: NC
9:      10: NC

Since it’s HC595, Vcc is 2 up to 6V

And while on this topic, the 16 segment has this order when sending a 16 bit stream:

t-s-r-n-m-k-p-u-h-g-e-f-d-c-b-a.

Bit 0 is t, bit 15 is a.

Nov 192016
 

I was looking for a recipe of something my grandma made. She called it “Gebackenes Zeug” which unfortunately is not a proper name. it contained Quark and mashed potatoes, but that’s all I knew. But today I found something which is at least similar if not identical except for the shape: Sächsische Quarkkeulchen. Here the recipe:

Zutaten für die Quarkkeulchen
500g Pellkartoffeln
500g abgetropfter Magerquark
150g Mehl
40g Zucker
70g Rumrosinen
Mark von ½ Vanilleschote
1 Eigelb
Abrieb von ½ Zitrone
Butterschmalz zum Braten
Puderzucker zum Bestäuben

Zubereitung der sächsischen Quarkkeulchen
1.    Die Kartoffeln weichkochen, pellen und durch die Kartoffelpresse drücken. Mit den restlichen Zutaten zu einem Teig vermengen.
2.    Aus dem Teig gleichgroße Quarkkeulchen formen und in heißem Butterschmalz beidseitig goldgelb ausbraten. Kurz vorm Servieren alle Quarkkeulchen mit etwas Puderzucker bestreuen.

Taken from here. Being in Japan means: no Quark, so I used Philadelphia cream cheese. I also added ascorbic acid (AKA Vitamin C) to make it a bit sour. No rainsins as I had none. No egg as cream cheese has enough fat. No lemon since I had none. And I had to use normal butter instead of clarified butter. No powdered sugar either.

So I had to change it a lot and I only used 3 potatoes and about 150g cream cheese. Turned out to be tasty though and it’s definitely similar to “Gebackenes Zeug”.

Will try again. Will make pictures then.

Nov 192016
 
Orange Pi Zero - Neat

Got myself a (actually two) Orange Pi Zero: US$7, quad core ARM Cortex A7@1.2GHz, 256MB RAM, WLAN, FastEthernet, 1 USB, USB-to-go for power. All in a (about) 5×5 cm² package. Add in a 8GB microSD card, and it’s a small capable little board.

While the memory looks on the small side, itś plenty to run one program. Armbian uses about 40MB itself when running:

harald@opz1:~$ free 
              total        used        free      shared  buff/cache   available 
Mem:         247012       36720      142740        2168       67552      193175 
Swap:        131068           0      131068

leaving >200MB left. Given that I can have a (small, limited) web server runnig on an ESP8266 with about 40KB RAM, 256MB is plenty for a single-purpose server/controller.

Ethernet works (as expected). WLAN works via simple nmtui command.

Controlling the 2 LED’s is easy too:

root@opz1:/# cd /sys/class/leds/red_led 
root@opz1:/sys/class/leds/red_led# ls 
brightness  device  max_brightness  power  subsystem  trigger  uevent 
root@opz1:/sys/class/leds/red_led# echo 1 >brightness  

That turns on the red LED. Similar for the green LED.

To find out what GPIO’s exist, use this:

root@opz1:/sys/class/leds/red_led# cat /sys/kernel/debug/gpio                                              
GPIOs 0-383, platform/sunxi-pinctrl, sunxi-pinctrl: 
 gpio-10  (?                   ) out hi 
 gpio-17  (red_led             ) out hi 
 gpio-202 (xradio_irq          ) in  lo 
 gpio-354 (?                   ) out hi 
 gpio-362 (green_led           ) out hi

To export a GPIO, do

# echo 15 >/sys/class/gpio/export

and then in /sys/class/gpio/gpio15/ you can see the standard Linux kernel GPIO things like direction (in/out) and value (0/1)

See also the schematics which show what port of the H2+ connects to what thing: orange-pi-zero-schanetics-v1_11 (sp!)

 

Nov 062016
 

During today’s Dev Japan Meetup I finally had the time to do something I always wanted to do but never had time to implement: Create a fast link from an end-device (AKA browser or phone application) to my LED display. That display is a simple 10×10 WS2812 LEDs strip originally connected to an Arduino with a Bluetooth receiver, but replaced by a Wemos D1 mini flashed with Espruino since that has WiFi and more RAM.

Here the important (but incomplete) part of the Espruino program:

var host = "the_ws_server.co.jp";
var WebSocket = require("ws");
var ws = new WebSocket(host,{
  path: '/',
  port: 8080, // default is 80
  protocol : "echo-protocol", // websocket protocol name (default is none)
  protocolVersion: 13, // websocket protocol version, default is 13
  origin: 'Espruino',
  keepAlive: 60
});

ws.on('open', function() {
  console.log("Connected to server");
});

ws.on('message', function(msg) {
  console.log("MSG: " + msg);
  if (msg == "R") {
    colorize(40, 10, 10);
  } else if (msg == "G") {
    colorize(10, 40, 10);
  } else if (msg == "B") {
    colorize(10, 10, 40);
  }
  esp8266.neopixelWrite(NodeMCU.D4, leds);
});

The logic is as simple as it looks: connect to a WS server and wait for incoming messages. If it’s “R”, or “G”, or “B”, then colorize the LED array.

Here a section of the browser part:

var ws = new WebSocket("ws://the_ws_server.co.jp:8080/");

ws.onopen = function(evt) {
  var conn_status = document.getElementById('conn_text');
  ws.send(JSON.stringify({"join":"led"}));
};

ws.onmessage = function(evt) {
  var newMessage = document.createElement('p');
  newMessage.textContent = "Server: " + evt.data;
  document.getElementById('messages_txt').appendChild(newMessage);
};

ws.onclose = function(evt) {
  alert ("Connection closed");
};

$(".color").click(function(evt) {
  console.log($(this).attr("val"));
  ws.send(JSON.stringify({"room":"led","msg":$(this).attr("val")}));
});

and the buttons look like

<button type="submit" class="color" val="R">Red</button>
<button type="submit" class="color" val="G">Green</button>
<button type="submit" class="color" val="B">Blue</button>

The one missing part is the websocket server in the middle which relays messages, which I took quite literally from here from the Espruino Websocket docs.

This is anything but clean code, and not yet a complete and instructive example application, but it’s the first step and a good proof-of-concept.

Next step is a web page to have a 10×10 grid of buttons which can be turned on/off by touching, and the corresponding commands are sent to the LED display.

Oct 302016
 

Lua is neat, but learning Lua and JavaScript and NodeJS. Although Lua and especially NodeMCU is similar (not only in name) to NodeJS, it would be nicer to use only one language.

Here the recipe:

  1. Download espruino_1v87.tve_master_b3dc05b_esp8266.tgz
  2. Write flash (note: might use 80m and qio, but my old one does dio):
    ./esptool.py --port /dev/ttyUSB0 --baud 115200 write_flash --flash_freq 40m --flash_mode dio --flash_size 32m \
    0x0000 ~/Downloads/espruino_1v87.tve_master_b3dc05b_esp8266/boot_v1.6.bin \
    0x1000 ~/Downloads/espruino_1v87.tve_master_b3dc05b_esp8266/espruino_esp8266_user1.bin \
    0x3FC000 ~/Downloads/espruino_1v87.tve_master_b3dc05b_esp8266/esp_init_data_default.bin \
    0x37E000 ~/Downloads/espruino_1v87.tve_master_b3dc05b_esp8266/blank.bin
  3. Verify it:
    ./esptool.py --port /dev/ttyUSB0 --baud 115200 verify_flash \
    0x1000 ~/Downloads/espruino_1v87.tve_master_b3dc05b_esp8266/espruino_esp8266_user1.bin \
    0x3FC000 ~/Downloads/espruino_1v87.tve_master_b3dc05b_esp8266/esp_init_data_default.bin \
    0x37E000 ~/Downloads/espruino_1v87.tve_master_b3dc05b_esp8266/blank.bin
  4. Connect at 115200bps.
  5. Connect to your AP:
    var wifi = require("Wifi");
    wifi.connect("your_sid", {password:"your_password"}, function(err){
     console.log("connected? err=", err, "info=", wifi.getIP());
    });
    wifi.stopAP();
    wifi.save();
  6. In the Espruino IDE add the IP address
  7. When you reconnect via Espruino IDE, you should now have 2 choices: serial or TCP/IP via WLAN